Tidyevaluation

Brendan Clarke

Digital Learning Lead, NHS Education for Scotland

Data masking

Data masking is the term for the default tidyverse
behaviour that allows us to refer to columns by unquoted
names. So in tidyverse we can write:

ae attendances %>%
filter (type == 1)

This is an alternative to the base R syntax for specifying
columns, with quoted column names in double square
brackets:

ae attendances|[["type"]]

Note that we can use base R syntax inside some tidyverse
functions:

ae attendances %>%
filter (ae attendances[["type"]]
== 1)

While data masking usually works well, allowing us to
write cleaner code, there are some situations where it
breaks down. This cheat sheet provides an overview of
ways of avoiding data masking problems.

Pronouns

Used to disambiguate which kind of object we are
referring to. .data[[“type”]] will refers to the type column
from our data:

ae attendances %>%
filter(.datal[["type"]] == 1)

env[[“type”]] will refer to the type environmental
variable:

type <= 2

ae attendances %>%
filter(type == .env[["type"]]) #
filters cases where the
type column == 2

Pronouns prevent ambiguity, allowing us to work with
clarity. This example has 3 objects named type:

type <- 2 # global .env type = 2

type org <- function(type, org) {
ae attendances %>%

filter(.data[["type"]] ==

.env[["type"]] &
.data[["org code"]] ==
.enV[["Org"]])

type org(l, "RF4")

{{var}}

{{var}} takes an unquoted argument, and converts it to a
data variable. Most useful for specifying cols from
functions:

col greater <- function(col, n) {
ae attendances %>%
filter ({{col}} >= n)
}

col greater (breaches, 5000)

Under the surface, {{var}} defuses and injects the variable.
You can also do the defuse and inject in separate steps:

col greater steps <- function(col,

n) {

new col <- enquo (col)

ae attendances %>%
filter(!!new col >= n)

col greater steps (breaches, 7000)

:=(name injection)

= is fussy, and checks that it can evaluate the LHS of an
expression. :=is less fussy

Use := with embracing to make col names from unquoted
args:

col greater maker <- function(col,

n) {

ae attendances %>%
select ({{col}}) %>%
filter({{col}} >= n) %>%
rename ("{{col}} over {{n}}" :=
{{col}})
}

col greater maker (attendances,
5000)

Use := with glue syntax to make col names from quoted
stuff:

col greater maker <- function (col,
n, name) {

cheat sheet

ae attendances %>%
select ({{col}})

filter({{col}} >= n) %>%

rename (" {name} over {{

{{col}})

o°

>%
n}i" :=

}

col greater maker (attendances,
5000, "Bruce")

Quasiquotation

Use quasiquotation to deal with difficult cases that mix
unquoted and quoted use

This code won’t work:

col quas <- function(col, n) {
ae_ attendances %>%
summarise (col = sum(col))

}

try(col quas ("attendances"))
This code gives the correct value, but the wrong name:

col quas <- function(col, n) {
ae attendances %>%
summarise (col =
sum(!!sym(col)))
}

try(col quas ("attendances"))

Everything is as it should be. !/sym(col) defuses and
injects the var:

col quas <- function(col) {
ae attendances %>%
summarise (! !sym(col)
sum(!!sym(col)))

}

var <- "attendances"

col quas (var)

NHS
— —~

Education
for
Scotland

mailto:brendan.clarke2@nhs.scot
https://rlang.r-lib.org/reference/embrace-operator.html

